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Abstract— The reduction in atmospheric inputs of S due to stricter emission regulations caused serious decrease in sulfur deposition and, 
as result, affected markedly growth and quality of numerous economically important plants. Trigonella foenum-graecum (Fenugreek) is one 
of the most widely aromatic and medicinal cultivated plants used in the world. To explore the response of Fenugreek towards poor sulfur 
nutrition, we studied the effect of S-starvation on plants of Trigonella foenum-graecum grown in nutrient solution containing less sulfur. S-
deprivation decreased the total dry matter of the plant by 36%, specially the aerial part. The chlorophyll content was reduced by 60% and 
the concentration of soluble sugars also decreased in both shoot and root by 50% and 56%, respectively. The measurement of in vivo 
nitrate reductase activity in the root tissues showed that sulfur deprivation reduced the capacity of plant to assimilate nitrogen by 68%.  

Keywords — Sulfur deficiency, Trigonella foenum-graecum, soluble sugars, nitrate reductase activity. 

——————————      —————————— 

1 INTRODUCTION                                                                     
he relevance of sulfur (S) in plant nutrition is well known, 
since S is essential for the synthesis of cysteine, methio-
nine, glutathione, proteins, thiamine, Coenzyme-A, iron-

sulfur centers, phytochelatines, and glucosinolates and serves 
as a precursor for a variety of further reduced sulfur-containing 
compounds [1]. Also, S is required for the synthesis of chloro-
phyll since S is a vital part of the ferredoxins, Fe-S protein in 
the chloroplasts [1]. Sulfur is involved in numerous biochemi-
cal pathways in plants, such as biosynthesis and regulation of 
enzymes activities, photosynthesis, respiration and cells anti-
oxidant protection, [2], [3], [4]. Sulfur plays also an important 
role in nitrogen fixation, quality and yield of legume crops [5], 
[6]. 
In recent years S-deficiency has become an increasing prob-
lem for agriculture resulting in decreased crop quality parame-
ters and yield [7]. Several studies showed a serious deficiency 
of sulfur content of agronomical crops [5], [8], [9] associated to 
the decrease of the S concentrations in the atmosphere. This 
is a result of the intensive production of higher yielding crops, 
higher use of fertilizers containing little or no sulfur and the 
decrease of the sulfur deposition because of the reduction in 
atmospheric inputs and stricter emission regulations. Klimont 
et al. [10] reported a decrease of atmospheric S concentration 
about 20TG between 1990 and 2011 in Eastern Europe, Cen-
tral Asia, Canada and US. This adverse situation affected 
markedly growth and quality of numerous economically im-
portant plants. Several studies have reported that many bio-
chemical and physiological responses were initiated upon ex-
posure of plants to S-deficiency, leading to a general reduction 

in metabolic activity including decrease in biomass and in-
creased root/shoot ratio [2], [11].  
 
Sulfur deficiency also leads to a large decrease in amino acids 
pool and chlorophylls content when compared with situations 
where S is in adequate supply, especially in young leaves [2], 
[11], [12]. Plants submitted to S-deficiency can also modify 
their root morphological traits to maximize the acquisition of 
nutrients under nutrient-deficient conditions [13].  

Fenugreek (Trigonella foenum-graecum) belongs to 
Fabaceae family and it is one of Mediterranean aromatic and 
medicinal plants, very cultivated in India, Egypt and Morocco 
[14]. Trigonella foenum-graecum is characterized by its power-
ful antioxidant and anti-radical activity [15] it is used in tradi-
tional medicine for the treatment of wounds, abscesses, arthri-
tis, bronchitis, ulcer and digestive problems [14].  Our investi-
gations were focused on the effect of the inorganic sulfur star-
vation on the metabolism and biochemistry of Trigonella 
foenum-graecum by analyzing the effects of S-deficiency on 
growth, mineral elements, chlorophyll, water soluble sugars, 
amino acids contents and nitrate reductase activity. 

2 MATERIAL AND METHODS 
2.1 Culture conditions  
The seeds of fenugreek (Trigonella foenum-graecum) were put 
to germinate on filter paper soaked with 10 ml of distilled water 
at temperature of 25°C. The seedlings were then transplanted 
into pots containing 1 kg of sand and vermiculite mixture (3:1) 
and placed in a greenhouse at between October and April, 
under natural light and photoperiod. The pots were divided into 
two batches of five and watered once per week for six weeks 
with 100 ml of nutrient solution (Hoagland and Arnon 1950) 
described in Table 1. The control plants received the complete 
nutrient solution containing 1 mol.m-3 S, while the S-deficient 
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plants received the same solution but containing only 0.05 
mol.m-3 S. The sampling was performed before the appear-
ance of the flower. Harvested plants were thoroughly washed 
with tap water and then with distilled water to clean and re-
move surface filth. They were separated into leaves, stems 
and roots and then dried in the oven at 80°C for 24 hours to 
measure dry weight. 

2.2 Mineral elements determination 
Sulfate ions in leaves were extracted by boiling fresh tissue in 
water whereas total sulfur content was determined by diges-
tion of 50 mg of dry matter of leaves in nitric acid (HNO3) and 
perchloric acid (HClO4) in the ratio of 85:15, for 4h at 120°C. 
The digested solution was adjusted to 10 ml with distilled wa-
ter. The sulfate concentration in the extracts was determined 
turbidimetrically [17], [18]. Sulfate ion in the extract was con-
verted to a barium sulfate suspension and the resulting turbidi-
ty was measured by reading the optical density at 430 nm 
(VWR UV-6300PC spectrophotometer). The standard curve 
was prepared by using different concentrations of sodium sul-
fate solutions.  
The other mineral elements: calcium (Ca), potassium (K), 
Magnesium (Mg), and Molybdenum (Mo) were determined by 
Inductively Coupled Plasma Atomic Emission Spectroscopy 
(ICP-AES). The mineralization of 1g dry matter was performed 
in a mixture of nitric acid and of perchloric acid (4:1, v/v) dur-
ing 4h at 120°C. 

 
2.3 Chlorophyll Content determination 
The chlorophyll was extracted from 30 mg of fresh young ex-
panded leaves with dimethyl sulfoxide (DMSO) in the dark at 
65°C for 30 min. After centrifugation the absorbance of extract 
was measured by using a spectrophotometer (VWR UV-
6300PC spectrophotometer) at 663 and 645 nm. The concen-
trations of chlorophyll a, chlorophyll b and total chlorophyll 
were calculated according the following formulae [19], [20]:  
Chl a (g.l-1) = 0.0127 *A663 – 0.00269*A645 
Chl b (g.l-1) = 0.0229 *A645 – 0.00468*A663 
Total Chl (g.l-1) = 0.0202 *A645 + 0.00802 *A663 
 
2.4 Total soluble sugars determination 
The total soluble sugars concentration was determined follow-
ing the method described by Grandy et al. [21]. 100 mg of 
fresh materiel were ground in 4 ml of ethanol (80%), the mix-
ture was placed in a water bath at 80°C for 30 min. After cen-
trifugation at 4500 rpm for 10 min, total soluble sugars were 
measured by using anthrone reagent (freshly prepared 0.2% 
(w/v) anthrone in sulfuric acid). The absorbance was immedi-
ately read at 625 nm by using a spectrophotometer (VWR UV-
6300PC spectrophotometer), and then converted into glucose 
equivalent (mg.g-1) using a calibration curve of glucose stand-
ards. 
 
2.5 Total amino acids determination  

The Extraction of amino acids was adapted from Barber et al. 
[22] with some modifications. Briefly, 100 mg of fresh material 
were grinded in 2 ml of sodium phosphate buffer (pH 7.5) fol-
lowed by successive hydro alcoholic extractions (80% and 
50%) by incubation in water bath at 80°C. The mixture was 
then centrifuged at 5000 rpm for 10 min, the supernatant was 
evaporated and the dry residue was resumed in 500 µl of dis-

tilled water. The amino acid assay was carried out by adding 1 
ml of the ninhydrin reagent prepared extemporaneously [23] to 
100 μl of the diluted extract. Test tubes were then incubated 
for 20 min in a boiling water bath and the reaction was 
stopped by rapid cooling into cold water. The absorbance was 
then read spectrophotometerically at 570 nm (VWR UV-
6300PC spectrophotometer). 

 
2.6 Measurement of the Nitrate Reductase Activity (NRA)  
NRA was assayed in vivo according to the method of Jaworski 
[24]. 200 mg of plant material were cut into 4 mm fragments 
and then incubated in test vial containing a reaction phosphate 
buffer (100 mM, pH 7.5 with 20 mM KNO3 and 1% isopropa-
nol). Test tubes were incubated at 30°C in the dark and the 
amount of nitrite produced by action of the enzyme was 
measured after addition of 1% sulfanilamide and 0.02% α-
naphtyl-ethylenediamine. In presence of nitrite, a pink colora-
tion appears and absorbance was measured by spectropho-
tometry at 540 nm. A standard curve was prepared in the 
same way as the samples with standard solutions of sodium 
nitrite (NaNO2). 
 
2.7 Statistical analysis 
Statistical analysis was performed using SYSTAT 12. Data 
were subjected to one-way analysis of variance (ANOVA) in 
order to determine significant differences among the treat-
ments. The results were considered significant at P<0.05. 
 
3. RESULTS  
3.1 Effects of sulfur deficiency on biomass production 
Sulfur deficiency influenced significantly the global growth of 
Trigonella foenum-graecum; the dry matter of the whole plant 
reached 420 mg.plant-1. The low concentration of sulfur in the 
medium provoked a very significant decrease in total dry mat-
ter. When compared to the control, S-deficient plants exhibited 
a decrease of total biomass by 36% (p <0.05). The analysis of 
different organs of plants showed significant differences be-
tween the control and S-deficient plants both in shoot and 
roots. In deficient plants, significant decreases were recorded 
in leaves, stem and roots of 61%, 21% and 22%, respectively 
(p<0.05) (Fig.1). 
 
3.2 Effect of S-deficiency on chlorophyll and mineral ele-
ments contents 
In the S-sufficient plants when the conditions of culture were 
optimal the concentration of total chlorophyll was 9.6 mg.g-1 
DW. The limitation of sulfur supply decreased the total chloro-
phyll content in leaves by 60%, it has fallen from 9.6 mg.g-1 
DW in the control to 3.6 mg.g-1 DW in S-deficient plants. This 
decrease was recorded both in the concentrations of chloro-
phyll a and chlorophyll b. Under control conditions the concen-
trations of chlorophylls a and b was 6.3 mg.g-1 DW and 3.3 
mg.g-1 DW, respectively. When plants were submitted to poor 
nutrition of sulfur, the corresponding concentrations of chloro-
phylls decreased significantly (p<0.05) by 60% and 56%, re-
spectively (Fig. 2). 
In control plants the mineral elements were distributed equally 
between the leaves and the roots (Table 2). Ca and K repre-
sented the highest mineral content of the plant, while Mo was 
the lowest content. In the case of sulfur deficiency, there was 
an increase in the contents of all mineral elements in leaves 
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except for Ca (P> 0.05). Significant increases in order of 11%, 
17% and 19% were recorded in K, Mg, and Mo, respectively (p 
<0.05). By contrast, no significant difference in the mineral 
composition in roots was observed, except for K which exhibit-
ed a significant increase when plants were submitted to S de-
ficiency.  
Under optimal conditions of growth the concentration of total 
sulfur in leaves was 1.5 mg.g-1 DW. Reduction in the sulfur 
supply caused an important decrease of 68%, the concentra-
tions of sulfur dropped from 1.5mg.g-1 in control plants to 0.5 
mg.g-1 in deficient ones (Fig.3a). The same reduction was ob-
served in sulfate concentrations in S deficient leaves, by 55% 
when compared to the control ones (P <0.005). It has fallen 
from 67 µg.g-1 DW to 30 µg.g-1 DW (Fig.3b). 
 
3.3 Effect of S-deficiency on amino acids contents  
The level of amino acid pool in Trigonella foenum-graecum 
was markedly affected by the low sulfur supply. The decrease 
of amino acids content was by 56% and 40% in  leaves and 
roots respectively, when compared with control plants 
(p<0.05), Amino acids level has fallen from 1.3 mg.g-1 DW and 
0.9 mg.g-1 DW in control plants to 0.6 mg.g-1 DW and 0.5mg.g-

1 DW in S-deficient ones in leaves and roots, respectively 
(Fig.4). 
 
3.4 Effect of S deficiency on total soluble sugars content 
The reduction of sulfur nutrition of Trigonella foenum-graecum 
caused an important decrease in the concentration of soluble 
sugars in both shoot and roots. In control plants, the soluble 
sugars content was 58.2 mg.g-1 and 30.6 mg.g-1 DW in leaves 
and roots, respectively. After exposure to sulfur deficiency the 
concentration of soluble sugar decreased by 56% in leaves 
and by 50% in roots (p<0.05). The content of soluble sugars 
dropped to 28.5 mg.g-1 DW and 13.5 mg.g-1 DW in leaves and 
roots, respectively (Fig.5). 
 
3.5 Effect of S deficiency on nitrate reductase activity 
(NRA) 
The in vivo NRA in roots of Trigonella foenum-graecum ex-
pressed in the amount of nitrite produced per hour was esti-
mated in our experiment conditions. The result showed serious 
impact of S starvation on the first step of nitrate assimilation. In 
control plants the NRA was estimated at 7.1 µg of NO2

-.g-1 

FW.h-1 but after the application of limited sulfur nutrition, the in 
vivo NRA dropped to 2.1 µg of NO2

-.g-1FW.h-1. The significant 
NRA decrease of 68% was recorded (P<0.05) (Fig.6). 
 
4. DISCUSSION  

In control plants when Trigonella foenum-graecum received 
sufficient sulfur nutrition, the total S content in leaves was 
0.15% and 4.3 % of total S was accumulated as sulfate. In 
response to sulfur deficiency, the total sulfur content in 
Trigonella foenum-graecum leaves decreased markedly 
(0.05%). This result shows clearly the S-deficient status of 
Trigonella foenum-graecum under our conditions of culture. 
The critical value of sulfur under which the plant is supposed 
S-deficient varies among plant species and depends on sev-
eral parameters (growth conditions, stage of sampling, ana-
lyzed part of plant and the S-compound species used for sulfur 
measurement).  
Generally, in S-deficient plants, the concentration of total sulfur 

must be less than 1.7 mg.g-1 and in the case of non-brassica 
vegetables including Trigonella foenum-graecum this value 
may be lower than 0.94 mg.g-1 [25]. Because of the interaction 
of sulfur and nitrogen metabolism, the N/S ratio in S-sufficient 
plants has to be maintained within the range of 20/1 [26]. 
However, in S-deficient plants maintained with optimal N nutri-
tion as the case in our conditions of growth, the N/S ratio in-
creases. This was reported in tomato leaves [27], sugar beet 
shoots [28], spinach leaves [29], Arabidopsis leaves [11], [30] 
and bean plants [31] submitted to S starvation. 
Sulfate is often the first metabolite to change in response to 
sulfur deficiency, and its uptake and distribution are closely 
regulated. We showed in this study that the S-deficiency de-
creased the sulfate concentration in leaves by 68%, this result 
is in agreement with those of Juszczuk et Ostaszewska [31] in 
bean plants and Blake-Kalff et al. [32] in oilseed rape submit-
ted to sulfur starvation. This reduction of sulfate concentration 
in leaves could be explained in one hand by the release of 
SO4

2- ions from vacuoles of mesophyll cells under prolonged S 
stress [33], [34], [35) and in the other hand most of newly ab-
sorbed sulfur is probably kept preferentially in roots. In Brassi-
ca napus Abdallah et al. [36] showed that only 23% of uptaken 
S were translocated to leaves when plants were submitted to 
S deprivation, whereas when S supply was adequate the cor-
responding value was 55% [37]. The reduction in the level of 
sulfate had significant impact on the overall plant develop-
ment. Biomass of both shoot and roots decreased in response 
to S-deficiency but the main relative decrease was recorded in 
leaves (-61%), the roots biomass was less affected by sulfur 
starvation. This result is in agreement with several works that 
have shown the negative effect of S-deficiency on the growth 
of the plant in Arabidopsis thaliana [38], [39], Medicago 
truncatula [40], [41] and Trifolium repens [42]. Several other 
works suggested that more metabolites are allocated from 
leaves to roots under S starvation [6], [41], which could explain 
the more pronounced decline of growth in shoot when com-
pared to roots. The same morphological modification was ob-
served in plants submitted to N, P or Mg starvation and could 
be associated to maintain the ability of roots to acquire mineral 
nutrient [38], [13], [30], [43], [44]. Moreover, in plants grown in 
S-defficient medium Juszczuk and Ostaszewska [31] observed 
higher decrease of leaves dry matter and showed that ATP 
production decreased by 48% in leaves and only by 20% in 
roots.  
The growth inhibition induced by the poor sulfur supply, is 
mainly associated to the crucial role that sulfur plays in the 
biochemical pathway. Several studies showed that proteins, 
sugars, amino acids, chlorophyll contents and S/C/N ratio 
were unbalanced because of the S-deficiency and this is un-
doubtedly associated to general reduction in metabolic activity 
[2], [11], [28], [31], [35], [41]. In our investigations a significant 
decrease in the order of 60% was recorded in total chlorophyll 
concentration in S-deficient plants. This reduction was exhibit-
ed both in chlorophyll a and chlorophyll b concentrations in 
leaf tissue and could be associated to the decrease in content 
of numerous S compounds such as cystein, methionine and S-
adenosylmethionine (SAM) [29], [30], [45]. SAM is a methio-
nine derivate that is involved in the chlorophyll synthesis path-
way as a methyl group donor [42], [45]. Two rich amino acids, 
cysteine and methionine act as structural and functional ele-
ment of chloroplast targeted proteins [31], [46]. Lunde et al. 
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[47] reported that in plants submitted to sulfur deficiency the 
Rubisco level decreased six fold, chlorophyll content reduced 
by 48%, the PSII efficiency was 31% lower and the ability of 
PSI to produce NADP+ decreased by 61%. These observations 
together with the occurrence of chloroplast degradation in re-
sponse to S deficiency [31] suggest a potential disturbance in 
photosynthetic electron transport chain reactions and CO2 fixa-
tion which may explain the lower dry matter production and the 
observed decrease in soluble sugars content when plants 
were  submitted to S deficiency.  
The reduction in soluble sugars under sulfur deficiency was 
also reported by Varechon [48] in Groundnut crops, [49] in zea 
mays and [50] in Medicago truncatula when grown in poor 
sulfur medium.  
Several other works showed a serious disturbance in mineral 
composition under sulfur starvation and in same line with our 
investigations, Kassem et al. [51] noted an increase in potas-
sium content in tomatoes submitted to sulfur deficiency. How-
ever, Gao et al. [41] showed a decrease in potassium levels in 
Medicago sativa crops grown in a sulfur-deficient environment 
while Gunes et al. [52] proved that there was no change in 
potassium concentrations in S deficient Medicago sativa. On 
other hand, several studies have shown an accumulation of 
magnesium in plants under sulfur deficiency conditions [27], 
[51] [53], [54]. The antagonism between the Mg2+ and SO2- 
ions is probably the cause of this accumulation [51]. 
It is well known that the absorption and the assimilation of sul-
fate are controlled by the nutritional status of the plant [55], 
[56], [57] and that the expression of many sulfate transporters 
is enhanced by limiting the sulfur nutrition in the medium [58]. 
The high-affinity sulfate transporters (SHST1) which are re-
sponsible for sulfate uptake from soil solution have definitively 
been shown to transport Mo which accumulates in plants 
submitted to S deficiency [55], [58], [59], [60] which explain the 
accumulation of Mo in the leaves of Trigonella foenum 
graecum submitted to S-starvation in our investigation.  
The S-starvation caused serious and significant decrease in 
the levels of amino acids in both leaves and roots. In previous 
work, Thomas et al. [28] showed that concentrations of sulfur 
less than 0.07 mol.m-3 in the medium caused significant de-
crease in the concentration of amino acids in sugar beets crop. 
This decrease in amino acids level can be due to a decrease 
in sulfur amino acids (Cysteine and Methionine).  
In this investigation, we showed significant reduction in the 
assimilation of nitrate ions in roots. The decrease of NR activi-
ty under sulfur deficiency reflects the primordial role of S in 
nitrogen assimilation [5], [6] without neglecting the impact of 
low availability of soluble carbohydrates. Cheng et al. [61] and 
Vincentz et al. [62] reported that the transcription of NR gene 
is induced by carbohydrates and it was clearly shown that S 
deficiency impact seriously the activity and the quantity of 
Rubisco enzyme [63].  
Furthermore, Foyer et al. [64] showed a direct correlation be-
tween NR activity and photosynthesis and the disturbance of 
NR activity recorded in Trigonella foenum-graecum grown in 
deficient-sulfur medium could be associated to low levels of 
chlorophyll and soluble sugars. The same result was reported 
by Migge et al. [65] in tobacco submitted to sulfur deprivation. 
 
5. CONCLUSION  
This work contributes to a first understanding of the response 

of Trigonella foenum-graecum subjected to sulfur stress. When 
applying a low supply of sulfur, the plant reacts negatively in 
terms of growth and the total biomass of the plant, but the 
leaves remains the most affected part. Chlorophyll levels, ami-
no acids and total soluble sugars contents were also reduced 
by sulfur deficiency. Moreover, the mineral composition 
changes significantly by the accumulation of K, Mg and Mo. 
Sulfur deficiency also affected the ability of the plant to assimi-
late nitrate ions by decelerating the nitrate reductase activity. 
These changes can be considered as an indicator of adapta- 
tion of Trigonella foenum-graecum against an environmental 
stress caused by low availability of sulfur in the medium 
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Figures and tables  
 
 

 
Fig. 1: Effect of sulfur deficiency on biomass production of 
whole plant of Trigonella foenum graecum submitted to 
sulfur deficiency. Control: complete nutrient solution (1 
mol.m-3 of S); S-deficient: S-deficient nutrient solution (0.05 
mol.m-3 of S). Different letters shown in the error bars mean 
significant differences among treatments and ecotypes at P 
< 0.05. 

 

Fig. 2: Chlorophylls concentration in leaves of Trigonella 
foenum graecum submitted to sulfur deficiency. Control: 
complete nutrient solution (1 mol.m-3 of S); S-deficient: S-
deficient nutrient solution (0.05 mol.m-3 of S). Chl : Chloro-
phyll; Different letters shown in the error bars mean signifi-
cant differences among treatments at P < 0.05. DW: dry 
weight 
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Fig. 3: (a) Total sulfur concentration, (b) Sulfates concentration 
in leaves of Trigonella foenum graecum submitted to sulfur defi-
ciency; Control: complete nutrient solution (1 mol.m-3 of S); S-
deficient: S-deficient nutrient solution (0.05 mol.m-3 of S). Differ-
ent letters shown in the error bars mean significant differences 
among treatments at P < 0.05. DW: dry weight 
 

Fig. 4: Amino acids concentration in leaves and roots of 
Trigonella foenum graecum submitted to sulfur deficiency. Con-
trol: complete nutrient solution (1 mol.m-3 of S); S-deficient: S-
deficient nutrient solution (0.05 mol.m-3 of S). Different letters 
shown in the error bars mean significant differences among 
treatments and ecotypes at P < 0.05. DW: dry weight 

Fig. 6: Nitrate reductase activity in roots of Trigonella 
foenum graecum submitted to sulfur deficiency. Control: 
complete nutrient solution (1 mol.m-3 of S); S-deficient: S-
deficient nutrient solution (0.05 mol.m-3 of S). Different 
letters shown in the error bars mean significant differ-
ences among treatments and ecotypes at P < 0.05. FW: 
fresh weight. 
 

 
Fig. 5: Total soluble sugar concentration in leaves and roots of 
Trigonella foenum graecum submitted to sulfur deficiency. Con-
trol: complete nutrient solution (1 mol.m-3 of S); S-deficient: S-
deficient nutrient solution (0.05 mol.m-3 of S). Different letters 
shown in the error bars mean significant differences among 
treatments at P < 0.05. DW: dry weight 
 

Table 1: Concentrations of trace elements and macro ele-
ments in nutrient solutions (mol.m-3). C: control plants ; -S: S-
deficient plants 
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